- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ryan Kemmer, Yeawon Yoo (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)There are many factors that affect the quality of data received from crowdsourcing, including cognitive biases, varying levels of expertise, and varying subjective scales. This work investigates how the elicitation and integration of multiple modalities of input can enhance the quality of collective estimations. We create a crowdsourced experiment where participants are asked to estimate the number of dots within images in two ways: ordinal (ranking) and cardinal (numerical) estimates. We run our study with 300 participants and test how the efficiency of crowdsourced computation is affected when asking participants to provide ordinal and/or cardinal inputs and how the accuracy of the aggregated outcome is affected when using a variety of aggregation methods. First, we find that more accurate ordinal and cardinal estimations can be achieved by prompting participants to provide both cardinal and ordinal information. Second, we present how accurate collective numerical estimates can be achieved with significantly fewer people when aggregating individual preferences using optimization-based consensus aggregation models. Interestingly, we also find that aggregating cardinal information may yield more accurate ordinal estimates.more » « less
-
Ryan Kemmer, Yeawon Yoo (, Proceedings of the Eigth AAAI Conference on Human Computation and Crowdsourcing)There are many factors that affect the quality of data received from crowdsourcing, including cognitive biases, varying levels of expertise, and varying subjective scales. This work investigates how the elicitation and integration of multiple modalities of input can enhance the quality of collective estimations. We create a crowdsourced experiment where participants are asked to estimate the number of dots within images in two ways: ordinal (ranking) and cardinal (numerical) estimates. We run our study with 300 participants and test how the efficiency of crowdsourced computation is affected when asking participants to provide ordinal and/or cardinal inputs and how the accuracy of the aggregated outcome is affected when using a variety of aggregation methods. First, we find that more accurate ordinal and cardinal estimations can be achieved by prompting participants to provide both cardinal and ordinal information. Second, we present how accurate collective numerical estimates can be achieved with significantly fewer people when aggregating individual preferences using optimization-based consensus aggregation models. Interestingly, we also find that aggregating cardinal information may yield more accurate ordinal estimates.more » « less
An official website of the United States government

Full Text Available